Shape Complexes in Continuous Max-Flow Hierarchical Multi-Labeling Problems

نویسندگان

  • John S. H. Baxter
  • Jing Yuan
  • Terry M. Peters
چکیده

Although topological considerations amongst multiple labels have been previously investigated in the context of continuous max-flow image segmentation, similar investigations have yet to be made about shape considerations in a general and extendable manner. This paper presents shape complexes for segmentation, which capture more complex shapes by combining multiple labels and super-labels constrained by geodesic star convexity. Shape complexes combine geodesic star convexity constraints with hierarchical label organization, which together allow for more complex shapes to be represented. This framework avoids the use of co-ordinate system warping techniques to convert shape constraints into topological constraints, which may be ambiguous or ill-defined for certain segmentation problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation.

Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of "shape complexes," which...

متن کامل

A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems

This work addresses a class of multilabeling problems over a spatially continuous image domain, where the data fidelity term can be any bounded function, not necessarily convex. Two total variation based regularization terms are considered, the first favoring a linear relationship between the labels and the second independent of the label values (Pott’s model). In the spatially discrete setting...

متن کامل

A Proximal Bregman Projection Approach to Continuous Max-Flow Problems Using Entropic Distances

One issue limiting the adaption of large-scale multi-region segmentation is the sometimes prohibitive memory requirements. This is especially troubling considering advances in massively parallel computing and commercial graphics processing units because of their already limited memory compared to the current random access memory used in more traditional computation. To address this issue in the...

متن کامل

A Continuous Max-Flow Approach to Multi-Labeling Problems under Arbitrary Region Regularization

The incorporation of region regularization into max-flow segmentation has traditionally focused on ordering and part-whole relationships. A side effect of the development of such models is that it constrained regularization only to those cases, rather than allowing for arbitrary region regularization. Directed Acyclic Graphical MaxFlow (DAGMF) segmentation overcomes these limitations by allowin...

متن کامل

A Continuous Max-Flow Approach to General Hierarchical Multi-Labelling Problems

Multi-region segmentation algorithms often have the onus of incorporating complex anatomical knowledge representing spatial or geometric relationships between objects, and general-purpose methods of addressing this knowledge in an optimization-based manner have thus been lacking. This paper presents Generalized Hierarchical Max-Flow (GHMF) segmentation, which captures simple anatomical part-who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1510.04706  شماره 

صفحات  -

تاریخ انتشار 2015